Efficient Monte Carlo Methods for Radiative Transfer Modeling
نویسندگان
چکیده
منابع مشابه
Efficient Monte Carlo methods for continuum radiative transfer
We discuss the efficiency of Monte Carlo methods in solving continuum radiative transfer problems. The sampling of the radiation field and convergence of dust temperature calculations in the case of optically thick clouds are both studied. For spherically symmetric clouds we find that the computational cost of Monte Carlo simulations can be reduced, in some cases by orders of magnitude, with si...
متن کاملRadiative Heat Transfer with Quasi Monte Carlo Methods
Monte Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena and geometries must be handled. Slow convergence is a well known disadvantage of this method. In this paper we demonstrate that a significant improvement in computation time can be achieved by using Quasi-Monte Carlo (QMC) methods to simulate Rapid Thermal Processing.
متن کاملMonte Carlo radiative transfer in protoplanetary disks
Aims. We present a new continuum 3D radiative transfer code, MCFOST, based on a Monte-Carlo method. MCFOST can be used to calculate (i) monochromatic images in scattered light and/or thermal emission, (ii) polarisation maps, (iii) interferometric visibilities, (iv) spectral energy distributions and (v) dust temperature distributions of protoplanetary disks. Methods. Several improvements to the ...
متن کاملEfficient Monte Carlo Device Modeling
A single-particle approach to full-band Monte Carlo device simulation is presented which allows an efficient computation of drain, substrate and gate currents in deep submicron MOSFETs. In this approach, phase-space elements are visited according to the distribution of real electrons. This scheme is well adapted to a test-function evaluation of the drain current, which emphasizes regions with l...
متن کاملEfficient Monte Carlo Methods for Cyclic Peptides
We present a new, biased Monte Carlo scheme for simulating complex, cyclic peptides. Backbone atoms are equilibrated with a biased rebridging scheme, and side-chain atoms are equilibrated with a look-ahead configurational bias Monte Carlo. Parallel tempering is shown to be an important ingredient in the construction of an efficient approach. Submitted to Molecular Physics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Atmospheric Sciences
سال: 2006
ISSN: 1520-0469,0022-4928
DOI: 10.1175/jas3755.1